Source code for streamline.models.artificial_neural_network

from abc import ABC
from streamline.modeling.basemodel import BaseModel
from streamline.modeling.parameters import get_parameters
from sklearn.neural_network import MLPClassifier as MLP


[docs] class MLPClassifier(BaseModel, ABC): model_name = "Artificial Neural Network" small_name = "ANN" color = "red" def __init__(self, cv_folds=3, scoring_metric='balanced_accuracy', metric_direction='maximize', random_state=None, cv=None, n_jobs=None): super().__init__(MLP, "Artificial Neural Network", cv_folds, scoring_metric, metric_direction, random_state, cv) self.param_grid = get_parameters(self.model_name) self.param_grid['random_state'] = [random_state, ] self.small_name = "ANN" self.color = "red" self.n_jobs = n_jobs
[docs] def objective(self, trial, params=None): self.params = {'activation': trial.suggest_categorical('activation', self.param_grid['activation']), 'learning_rate': trial.suggest_categorical('learning_rate', self.param_grid['learning_rate']), 'momentum': trial.suggest_float('momentum', self.param_grid['momentum'][0], self.param_grid['momentum'][1]), 'solver': trial.suggest_categorical('solver', self.param_grid['solver']), 'batch_size': trial.suggest_categorical('batch_size', self.param_grid['batch_size']), 'alpha': trial.suggest_float('alpha', self.param_grid['alpha'][0], self.param_grid['alpha'][1], log=True), 'max_iter': trial.suggest_categorical('max_iter', self.param_grid['max_iter']), 'random_state': trial.suggest_categorical('random_state', self.param_grid['random_state'])} mean_cv_score = self.hyper_eval() return mean_cv_score