Source code for streamline.models.naive_bayes

from abc import ABC
from streamline.modeling.basemodel import BaseModel
from streamline.modeling.parameters import get_parameters
from sklearn.naive_bayes import GaussianNB as NB


[docs] class NaiveBayesClassifier(BaseModel, ABC): model_name = "Naive Bayes" small_name = "NB" color = "silver" def __init__(self, cv_folds=3, scoring_metric='balanced_accuracy', metric_direction='maximize', random_state=None, cv=None, n_jobs=None): super().__init__(NB, "Naive Bayes", cv_folds, scoring_metric, metric_direction, random_state, cv) self.param_grid = get_parameters(self.model_name) self.small_name = "NB" self.color = "silver" self.n_jobs = n_jobs
[docs] def objective(self, trial, params=None): self.params = {} mean_cv_score = self.hyper_eval() return mean_cv_score