streamline.modeling.basemodel module
- class streamline.modeling.basemodel.BaseModel(model, model_name, cv_folds=3, scoring_metric='balanced_accuracy', metric_direction='maximize', random_state=None, cv=None, sampler=None, n_jobs=None)[source]
Bases:
object
Base Model Class for all ML Models
- Parameters:
model –
model_name –
cv_folds –
scoring_metric –
metric_direction –
random_state –
cv –
sampler –
n_jobs –
- hyper_eval()[source]
Hyper eval for objective function Returns: Returns hyper eval for objective function
- model_evaluation(x_test, y_test)[source]
Runs commands to gather all evaluations for later summaries and plots.
- objective(trial, params=None)[source]
Unimplemented objective function stub, needs to be overridden :param trial: optuna trial object :param params: dict of optional params or None