streamline.runners.stats_runner module
- class streamline.runners.stats_runner.StatsRunner(output_path, experiment_name, algorithms=None, exclude=('XCS', 'eLCS'), class_label='Class', instance_label=None, scoring_metric='balanced_accuracy', top_features=40, sig_cutoff=0.05, metric_weight='balanced_accuracy', scale_data=True, exclude_plots=None, show_plots=False, run_cluster=False, queue='defq', reserved_memory=4)[source]
Bases:
object
Runner Class for collating statistics of all the models
- Parameters:
output_path – path to output directory
experiment_name – name of experiment (no spaces)
algorithms – list of str of ML models to run
scoring_metric='balanced_accuracy' –
sig_cutoff – significance cutoff, default=0.05
metric_weight='balanced_accuracy' –
scale_data=True –
exclude_plots –
metric_weight – ML model metric used as weight in composite FI plots (only supports balanced_accuracy or roc_auc as options). Recommend setting the same as primary_metric if possible, default=’balanced_accuracy’
top_features – number of top features to illustrate in figures, default=40
show_plots – flag to show plots