streamline.models.gradient_boosting module

class streamline.models.gradient_boosting.CGBClassifier(cv_folds=3, scoring_metric='balanced_accuracy', metric_direction='maximize', random_state=None, cv=None, n_jobs=None)[source]

Bases: BaseModel, ABC

Base Model Class for all ML Models

Parameters:
  • model

  • model_name

  • cv_folds

  • scoring_metric

  • metric_direction

  • random_state

  • cv

  • sampler

  • n_jobs

color = 'magenta'
model_name = 'Category Gradient Boosting'
objective(trial, params=None)[source]

Unimplemented objective function stub, needs to be overridden :param trial: optuna trial object :param params: dict of optional params or None

small_name = 'CGB'
class streamline.models.gradient_boosting.GBClassifier(cv_folds=3, scoring_metric='balanced_accuracy', metric_direction='maximize', random_state=None, cv=None, n_jobs=None)[source]

Bases: BaseModel, ABC

Base Model Class for all ML Models

Parameters:
  • model

  • model_name

  • cv_folds

  • scoring_metric

  • metric_direction

  • random_state

  • cv

  • sampler

  • n_jobs

color = 'cornflowerblue'
model_name = 'Gradient Boosting'
objective(trial, params=None)[source]

Unimplemented objective function stub, needs to be overridden :param trial: optuna trial object :param params: dict of optional params or None

small_name = 'GB'
class streamline.models.gradient_boosting.LGBClassifier(cv_folds=3, scoring_metric='balanced_accuracy', metric_direction='maximize', random_state=None, cv=None, n_jobs=None)[source]

Bases: BaseModel, ABC

Base Model Class for all ML Models

Parameters:
  • model

  • model_name

  • cv_folds

  • scoring_metric

  • metric_direction

  • random_state

  • cv

  • sampler

  • n_jobs

color = 'pink'
model_name = 'Light Gradient Boosting'
objective(trial, params=None)[source]

Unimplemented objective function stub, needs to be overridden :param trial: optuna trial object :param params: dict of optional params or None

small_name = 'LGB'
class streamline.models.gradient_boosting.XGBClassifier(cv_folds=3, scoring_metric='balanced_accuracy', metric_direction='maximize', random_state=None, cv=None, n_jobs=None)[source]

Bases: BaseModel, ABC

Base Model Class for all ML Models

Parameters:
  • model

  • model_name

  • cv_folds

  • scoring_metric

  • metric_direction

  • random_state

  • cv

  • sampler

  • n_jobs

color = 'cyan'
model_name = 'Extreme Gradient Boosting'
objective(trial, params=None)[source]

Unimplemented objective function stub, needs to be overridden :param trial: optuna trial object :param params: dict of optional params or None

small_name = 'XGB'