streamline.models.gradient_boosting module
- class streamline.models.gradient_boosting.CGBClassifier(cv_folds=3, scoring_metric='balanced_accuracy', metric_direction='maximize', random_state=None, cv=None, n_jobs=None)[source]
Bases:
BaseModel
,ABC
Base Model Class for all ML Models
- Parameters:
model –
model_name –
cv_folds –
scoring_metric –
metric_direction –
random_state –
cv –
sampler –
n_jobs –
- color = 'magenta'
- model_name = 'Category Gradient Boosting'
- objective(trial, params=None)[source]
Unimplemented objective function stub, needs to be overridden :param trial: optuna trial object :param params: dict of optional params or None
- small_name = 'CGB'
- class streamline.models.gradient_boosting.GBClassifier(cv_folds=3, scoring_metric='balanced_accuracy', metric_direction='maximize', random_state=None, cv=None, n_jobs=None)[source]
Bases:
BaseModel
,ABC
Base Model Class for all ML Models
- Parameters:
model –
model_name –
cv_folds –
scoring_metric –
metric_direction –
random_state –
cv –
sampler –
n_jobs –
- color = 'cornflowerblue'
- model_name = 'Gradient Boosting'
- objective(trial, params=None)[source]
Unimplemented objective function stub, needs to be overridden :param trial: optuna trial object :param params: dict of optional params or None
- small_name = 'GB'
- class streamline.models.gradient_boosting.LGBClassifier(cv_folds=3, scoring_metric='balanced_accuracy', metric_direction='maximize', random_state=None, cv=None, n_jobs=None)[source]
Bases:
BaseModel
,ABC
Base Model Class for all ML Models
- Parameters:
model –
model_name –
cv_folds –
scoring_metric –
metric_direction –
random_state –
cv –
sampler –
n_jobs –
- color = 'pink'
- model_name = 'Light Gradient Boosting'
- objective(trial, params=None)[source]
Unimplemented objective function stub, needs to be overridden :param trial: optuna trial object :param params: dict of optional params or None
- small_name = 'LGB'
- class streamline.models.gradient_boosting.XGBClassifier(cv_folds=3, scoring_metric='balanced_accuracy', metric_direction='maximize', random_state=None, cv=None, n_jobs=None)[source]
Bases:
BaseModel
,ABC
Base Model Class for all ML Models
- Parameters:
model –
model_name –
cv_folds –
scoring_metric –
metric_direction –
random_state –
cv –
sampler –
n_jobs –
- color = 'cyan'
- model_name = 'Extreme Gradient Boosting'
- objective(trial, params=None)[source]
Unimplemented objective function stub, needs to be overridden :param trial: optuna trial object :param params: dict of optional params or None
- small_name = 'XGB'