streamline.models.learning_based module
- class streamline.models.learning_based.ExSTraCSClassifier(cv_folds=3, scoring_metric='balanced_accuracy', metric_direction='maximize', random_state=None, cv=None, n_jobs=None, iterations=None, N=None, nu=None, expert_knowledge=None)[source]
Bases:
BaseModel
,ABC
Base Model Class for all ML Models
- Parameters:
model –
model_name –
cv_folds –
scoring_metric –
metric_direction –
random_state –
cv –
sampler –
n_jobs –
- color = 'lawngreen'
- model_name = 'ExSTraCS'
- objective(trial, params=None)[source]
Unimplemented objective function stub, needs to be overridden :param trial: optuna trial object :param params: dict of optional params or None
- small_name = 'ExSTraCS'
- class streamline.models.learning_based.XCSClassifier(cv_folds=3, scoring_metric='balanced_accuracy', metric_direction='maximize', random_state=None, cv=None, n_jobs=None, iterations=None, N=None, nu=None)[source]
Bases:
BaseModel
,ABC
Base Model Class for all ML Models
- Parameters:
model –
model_name –
cv_folds –
scoring_metric –
metric_direction –
random_state –
cv –
sampler –
n_jobs –
- color = 'olive'
- model_name = 'XCS'
- objective(trial, params=None)[source]
Unimplemented objective function stub, needs to be overridden :param trial: optuna trial object :param params: dict of optional params or None
- small_name = 'XCS'
- class streamline.models.learning_based.eLCSClassifier(cv_folds=3, scoring_metric='balanced_accuracy', metric_direction='maximize', random_state=None, cv=None, n_jobs=None, iterations=None, N=None, nu=None)[source]
Bases:
BaseModel
,ABC
Base Model Class for all ML Models
- Parameters:
model –
model_name –
cv_folds –
scoring_metric –
metric_direction –
random_state –
cv –
sampler –
n_jobs –
- color = 'green'
- model_name = 'eLCS'
- objective(trial, params=None)[source]
Unimplemented objective function stub, needs to be overridden :param trial: optuna trial object :param params: dict of optional params or None
- small_name = 'eLCS'